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ON CONVERGENCE ACCELERATION TECHNIQUES FOR UNSTRUCTURED

MESHES

DIMITRI J. MAVRIPLIS *

Abstract. A discussion of convergence acceleration techniques as they relate to computational fluid

dynamics problems on unstructured meshes is given. Rather than providing a detailed description of partic-

ular methods, the various different building blocks of current solution techniques are discussed and examples

of solution strategies using one or several of these ideas are given. Issues relating to unstructured grid

CFD problems are given additional consideration, including suitability of algorithms to current hardware

trends, memory and cpu tradeoffs, treatment of non-linearities, and the development of efficient strategies

for handling anisotropy-induced stiffness. The outlook for future potential improvements is also discussed.
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1. Introduction.

1.1. The Need for Convergence Acceleration Techniques. The field of computational fluid dy-

namics is generally characterized by problems of widely varying scales. For example, the use of millions of

grid points, which is common today in three dimensional simulations, results in global length scales spanning

the computational domain which are several orders of magnitude larger than the smallest scales resolved by

neighboring grid points. Anisotropic resolution commonly employed for viscous flow calculations at high-

Reynolds numbers results in streamwise length scales that are often three to four orders of magnitude larger

than normal length scales. Even the time or length scales inherent in the continuous governing equations can

be very disparate, such as the scales associated with acoustic and particle speeds in a nearly incompressible

flow, or highly disparate reaction rates in chemically reacting flows. These phenomena all but guarantee

that any simple-minded explicit scheme will be extremely inefficient for solving such problems.

While direct solution techniques can be used to solve stiff problems, several difficulties arise in the case of

CFD problems. Since the governing equations are non-linear, a direct method cannot produce an answer in a

single iteration (sparse matrix inversion), and must therefore be used iteratively. Although a fully converged

solution can be obtained in a small number (usually O(10)) of iterations, each iteration is extremely (most

often prohibitively) expensive in terms of memory and cpu requirements. This is largely due to the fact that

such methods make no attempt to take into account the structure of the problem at hand.

Present-day convergence acceleration methods are mostly based on trying to achieve the optimum bal-

ance between speed of convergence and cost of iterations, and this is most often guided by studying the

mathematical and/or physical structure of the particular problem at hand.

The empirical verification of Moore's Law (i.e. doubling of computational power at fixed cost every

18 months) over the last two decades has caused some to question the need for improved convergence
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FIG. 1.1. Illustration of advances due to algorithmic improvements and hardware improvements (reproduced from reference

Pl)

acceleration techniques, opting instead to concentrate on incorporating additional physics through increased

model complexity and/or resolution. Unfortunately, the incorporation of additional physics most often also

increases the stiffness of the problem, resulting either in problems which simply cannot be solved by simple

solution techniques, or take even longer to solve in spite of the availability of faster hardware. In the "Blue

Book" report on scientific computing compiled by the National Science Foundation [1], a comparison of

the enabling hardware advances versus the enabling algorithmic advances, reproduced here in Figure 1.1,

serves to illustrate how the two fields have contributed almost equally to the overall advances in present-

day simulation capability. The need for more efficient steady-state solution algorithms takes on even more

significance when one considers the trend from steady-state Navier-Stokes solvers to unsteady solvers, and

design optimization capabilities, which involve the solution of many intermediate steady-state or pseudo-

steady-state problems for each run.

It is generally believed that there is the potential for one to two orders of magnitude improvement in

convergence rates for steady-state Reynolds-averaged Navier-Stokes (RANS) calculations using refinements of

current methods (e.g. fully converged solutions in hundreds of cycles rather than thousands or more cycles),

while there exists the possibility for another one to two orders of magnitude improvement in devising radically

new approaches to convergence acceleration [55] (e.g. textbook multigrid methods capable of convergence

rates of 0.1). Many of these techniques are in their infancy, and remain to be applied to complicated problems.

1.2. Architectural Issues. Since reducing the overall cost of a solution is the ultimate goal of con-

vergence acceleration, algorithms must be designed to run on cost effective hardware. The most often cited

example is the need for algorithms to "parallelize" due to the advent of massively parallel computers. How-

ever, there are many other architectural issues which must be considered. While processor speed and memory
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availabilityhaveincreasedexponentiallyoverthelasttwodecades,memorylatency,theratiooftimerequired
to fetchavariablefrommemoryversusthetimerequiredforafloating-pointoperationhasactuallyincreased
dramaticallyoverthistimeperiod,asillustratedbythenumbersinTable1.1,reproducedherefromreference
[2].Whilethesenumbersreflectsingleprocessorcharacteristics,thesetrendsareexacerbatedonmassively
parallelcomputerarchitecturesdueto therelativelyhigherlatencyandlowerbandwidthof inter-processor
communication.Thishasspawnedthewidespreaduseof hierarchicalmemorysystems(suchasmultilevel
caches)to hidelatency.Thedevelopmentof latencytolerantalgorithms,whichusuallyimpliestheuseof
cachefriendlystrategiessuchasdatare-useandlocality,whileminimizinginter-processorcommunication,
isanimportantconsiderationin today'shardwareenvironment.

An indispensabletechniquefor improvingcachere-usefor unstructuredmeshsolversinvolvesdata-
reorderingfor locality,or sparse-matrixbandwidthminimization.Numerousre-orderingstrategieshave
beendeveloped[12,14,30],mostoftendoublingor tripling theoverallcomputationalthroughput.For
parallelcomputations,meshpartitioningstrategieswhichminimizethenumberof intersectedmeshedges,
andthusoverallinter-processorcommunication,whilemaintainingload-balance,havealsobeenthesubject
of extensiveresearch[44,18,23].Whilethesetechniquescanbeappliedto mostanysolutionalgorithm,
thedevelopmentoflatencytolerantsolutionalgorithms,suchasmultigrid[36]or Newton-Krylov-Schwarz
methods[9]isalsoanimportantconsideration.

Similarly,oneof thechoicesoftenconfrontingthealgorithmresearcher,particularlyin the caseof
unstructuredmeshes,is thetradeoffbetweenstorageandcomputation.Forexample,in animplicitscheme,
theoriginaldiscretizedequationset:

(1.1) 0w0_ + a(w) = 0

where w represents the solution vector, and R is the (non-linear) residual, is linearized about the current

state, which yields the system:

I
OR]Aw = -R(w)

(1.2) [_-t + -_w

DR
The Jacobian matrix _-5 represents a large sparse matrix. The storagc required for the non-zeros of this

matrix can easily be an order of magnitude larger than that required to assemble the residual R(w) in a

purely explicit scheme.

An alternative to storing the entire Jacobian matrix is to compute the matrix vector product OR Aw by
Ow

finite difference as:

(1.3)

or, alternatively

(1.4)

OR

_wwAw = R(w + Aw) - R(w)

OR. R(w + caw) -- R(w)
_wwAW=



System

CDC 7600

CRAY 1

CRAY X-MP

SGI PowerChall

CRAY T3E-900

Memory

latency Ins]

275

150

120

760

280

Clock

speed [ns]

Ratio FP ops per FP ops to cover

clock period memory latency

27.5 10 1

12.5 12 2

8.5 14 2

13.3 57 4

2.2 126 2

TABLE 1.1

10

24

28

228

252

Historical memory latencies (reproduced from: http://wurw, cray. com/preducts/systems/crayt3e/l$OO/performance.htrnl)

where • is a small parameter. This involves only the storage associated with the residual R(w), but involves

multiple residual evaluations. For discretizations where the residual evaluation is an expensive operation

(e.g. for example in combustion problems which may involve table lookups for reaction rates), storing the

full Jacobian may be the most effective approach, while in memory limited cases, thc second approach is

more useful. Similar tradeoffs show up in many convergence acceleration algorithms. For example, in a

Krylov technique such as GMRES, increasing the number of search directions can often be employed to

enhance convergence at the expense of increased memory usage.

Clearly, the choice must not only depend on the algorithm, but on the relative cost of memory and cpu

capability. If one assumes that the limiting factor for practical calculations in a production environment is

the total runtime, then given the speed of the algorithm, one can deduce the maximum problem size which

can be solved on the given hardware in the allotted time. If the memory requirements of this maximum

problem size surpass the available memory, then the problem is said to bc memory limited, and algorithms

which avoid aggressive memory usage need to be employed. On the other hand, if the problem is not memory

limited, then enhanced convergence acceleration or cpu time reduction may be sought using techniques which

employ additional memory.

Assuming present day unstructured mesh steady state RANS algorithms are capable of converging of

the order of 1 million points per processor within a 24 hour time period on modcrn day workstations

or parallel machines, and assuming such machines can be outfitted at reasonable cost with 1 Gbyte of

memory per processor, this results in a maximum memory usage of about 1 Kbyte (or 128 8-byte words) of

memory per grid point. This is close to the amount required by a simple explicit scheme on unstructured

grids. Therefore, steady-state unstructured grid RANS calculations are extremely memory limited in today's

hardware environment. However, unsteady calculations, or design optimization calculations, which involve

many equivalent steady-state calculations and thus much longer run times while using the same memory

requirements, may in general be much less memory limited, and more memory intensive algorithms may be

exploited. The algorithmic tradeoffs of memory versus cpu usage must therefore be guided by the nature of

the problem to be solved, as well as the current economics of available hardware, which in itself is constantly

in a state of change.

2. Classification of Convergence Acceleration Techniques.

2.1. Properties of the Jacobian. All convergence acceleration techniques rely in some form or other

on the Jacobian matrix of the system of equations to be solved. The Jacobian is obtained as per equation

(1.2), by linearizing the equations about the current state. The Jacobian represents the change of the residual



at a pointwith respectto the solutionvalues•Forunstructuredmeshes,theJacobianconsistsof a large
sparsematrix,thesparsitypatternofwhichdependsonthestencilof theresidual•

In sparsematrixterminology,thegraphofamatrixisgivenbythesetof edgesformedbydrawingaline
betweentherowandcolumnnumberassociatedwith eachnon-zeroentryin thesparsematrix.In thecase
oftheNavier-Stokesequations,thc 3acobiantakesonasparseblock-matrixstructure,whereeachnon-zero
entrybelongsto a5x 5submatrix.It is thenusefulto considerthegraphof thissparseblock-matrixasthe
setof edgesjoiningrowandcolumnnumbersidentifyingnon-zeroblocksub-matrices,asdepictedin Figure
2.1.Theserowandcolumnnumberscorrespondto grid-pointaddresses.Foranearestneighborstencilon
tetrahedralmeshes,thegraphoftheblockmatrixis identicalto thegraphofthegrid,meaningthatforevery
edgein thegrid,thereexiststwoblocksubmatrices(upperandlower)in theJacobianmatrix. Including
thenon-zeroblockmatriceson thediagonalof the 3acobian,thetotal numberof non-zeroentriesin the
Jacobianmatrixbecomes

(2.1)

5 x 5 x number of vertices +

5 × 5 x number of edges x 2

In the case of tetrahedral meshes, where the number of edges is equivalent to 6 or 7 times the number of

vertices, this results in a total of at least 325 non-zeros per grid point. This represents a considerable amount

of storage over and above the 60 to 100 words per grid point that are generally required for an explicit solver

on tetrahedral meshes [38, 42]. In general, only first-order discretizations result in nearest neighbor stencils.

A typical second-order Jacobian involving distance-two neighbors requires of the order of 1400 words of

storage per grid point.
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For these reasons, Jacobian matrices based on a first-order discretization are often employed in implicit

schemes for solving equations based on second-order discretizations. Furthermore, in cases where the Jaco-

bian matrix graph and the grid graph are equivalent, operations involving the Jacobian can be supported by

an edge-based data-structure, similar to the one typically used for constructing the residual on unstructured

meshes [38, 42, 31, 4].

On non-simplicial meshes, such as meshes involving prisms, pyramids and hexahedra, traditional finite-

element discretizations result in non-nearest neighbor stencils, generally involving diagonally opposite points



withinanelementwhicharenotconnectedbyameshedge.In thesecases,it isadvantageoustoreformulate
thediscretizationintoanearestneighborstencilwhenpossibh:.F_)rconvectiveterms,thiscanbedoneusinga
finite-volumeanalogy,whileforviscousterms,thisisonlypossi_.icundertheassumptionofincompressibility
andconstantviscosityusingafinitedifferenceapproach,orbyresortingto athin-layerdiscretization[38,16].
In caseswherethediscretizationcannotbesupportedonanearest-neighborstencil,approximateJacobians
basedonareducedstencilareoftenemployed.

WhenexactJacobiansaredesiredin thecontextofanon-nearest-neighborstencil,afinitedifferenceofthe
residualmaybeappliedto approximatetheJacobian-vectorproduct,a techniqueoftenemployedinNewton-
Krylov methods. For second-order schemes based on reconstruction, another approach consists of computing

the second-order Jacobian-vector products using the first-order Jacobian operating on a reconstruction of

the target vector as given by Barth [6]:

[0-1 [0-tp=(2.2) I

where the Jacobian subscriptrepresents itsorder of accuracy, and p is an arbitraryvector,and _(p)

representsthe high-orderreconstructionofp using the same reconstructionoperatoremployed inthe discrete

residualoperator R.

2.2. Traditional Classification. For the purposes of this paper, the numerous convergence acceler-

ation techniques may be classified into four groups: Direct Methods, Iterative Implicit Methods, Precondi-

tioning Techniques, and Multigrid Methods. Such a classification is by no means complete or unambiguous,

as many techniques can bc shown to be equivalent to others, and most complete algorithms combine several

techniques from more than one of these areas.

2.3. Direct Methods. Most implicit methods begin with the lincarization of the governing equations:

I OR

(2.3) [E/+ = -R(w)

OR
In a directmethod, the augmented Jacobian [_-_+ _'5]isinvertedby Gaussian elimination.As the time-

step isincreasedto infinity,a non-linearNewton's method isrecovered.The quadraticconvergence property

of Newton's method resultsin very fastasymptotic convergence to machine precision[59].However, the

expense ofthe matrix inversionprocedure,which scalesas n3,where n isthe number ofunknowns, isusually

overwhelming, thus making directmethods non-competitiveforlargeproblems.

Rather than invertingthe entireJacobian matrix exactly,one may choose to dividethe matrix into

submatrices,through a partitioningprocess,and then to inverteach submatrix directly.This substantially

reduces the complexity of the inversionprocess,due to the smallersizeof the number of unknowns n in

each subdomain. The inversionof the globalmatrix can thcn be calculatedfrom the invertedsubmatrices,

and the (heretoforeneglected)coupling between the domains. This isthe basisforShur-complement meth-

ods and Schwarz alternatingmethods, which specifyparticulartreatments for the inter-domain coupling

[50].Although itisusefulto think of thesemethods as performing directinversionson the sub-matrices,in

generalany technique (ofteniterative)may be appliedto achievcan approximation to the invertedsubma-

trices.These methods are naturallysuitedfor parallelcomputer architectures,where each submatrix may

be associatedwith an individualprocessor.



2.4. Iterative Methods. Rather than inverting the Jacohian matrix directly at each time-step, the

linear system resulting from equation (2.3) may bc solved approximately at each time-step using an iterative

method. This can substantially reduce the overall computational requirements since the linear system need

not be solved to a high degree of accuracy at each time-step (i.e. it is only being used to advance to the

next non-linear time-step), and because iterative methods generally exhibit lower computational complexity

than direct inversion methods. A common practice consists of approximating the true Jacobian matrix

in equation (2.3) with a Jacobian based on a linearization of a first-order discretization of the residual.

This substantially reduces the memory requirements for schemes which explicitly store the Jacobian matrix,

while resulting in a linear system that is more diagonally dominant and thus less stiff to solve. However, the

mismatch between the discretization and Jacobian operators implies that the quadratic convergence property

of Newton's method will not be attained.

Given a linear system to be solved:

(2.4) Ax = b

a class of iterative schemes is obtained by splitting the matrix A into two parts M and N

(2.5) [M + NI x = b

The resulting iterative scheme is then defined as:

(2.6)

or equivalently

(2.7)

Mx k+l -_ b - Nx k

M[x k+l-x k] = -Ax k ÷ b= -r k

where r k represents the residual for the linear system at the k _h step. Different choices of M lead to several

well known interative schemes:

• M -- I : Richardson's method

• M = D ,wherc D is the diagonal : Jacobi iteration

• M -- D-I-E, where D is the diagonal and E is the lower triangular part of A : Gauss Seidel Iteration

• M = D ÷ E step, followed by M = D ÷ F step, where F is the upper triangular part of A :

Symmetric Gauss Seidel

While the above splittings are applied directly to the Jacobian matrix, and thus depend on the ordering of

the grid points, other splittings are possible which depend only on the formulation of the non-linear residual

operator. For example, if M is taken as all the matrix entries which correspond to a set of grid lines (in a

structured grid using a first-order linearization), a line-implicit scheme is obtained. A line-implicit scheme

can be constructed for unstructured grids by grouping contiguous edges of the mesh together (using a graph

algorithm) to form a set of lines, and then specifying M to be the entries corresponding to these edges in

addition to the diagonal entries [17, 32, 34, 35]. Other types of splittings of the Jacobian matrix are possible,

such as the convective eigenvalue-based splitting employed in the LU-SGS schemes[22, 52].

Krylov methods represent a different approach to iterative methods. The general idea is to obtain

improved updates to the solution by using information generated at previous updates. There are a number

of different Krylov methods which have been developed, but for CFD problems, the most prevalent Krylov



technique is the GMRES method [51]. Given the linear system of equation (2.4), GMRES(k) seeks updates

of the form

(2.8) xk : xo + Yk

where x0 is the initial guess, and Yk is the best possible correction over the Krylov subspacc gm :

span [r0, At0, A2ro, ..., Ak-lro] which minizes the residual:

(2.9) llrk]I = min_llro + Aylt

where r0 = Ax0 - b represents the initial residual. Thus, as the number of iterates increases, the Krylov

subspace becomes larger, and the update approaches the exact result. In fact, a GMRES method converges

exactly in n steps for a problem with n unknowns. However, since at each stage all previous solution

vectors must be stored, and since the complexity of the minimization problem grows quadratically in the

dimension of the Krylov subspace, it is generally only practical to use a small number of steps (i.e. k << n).

In this case, GMRES must itself be applied iteratively, discarding all history effects after (k << n) cycles,

and using the latest solution vector as the initial guess for the restarted GM-RES procedure at the next

iteration. An important aspect of GMRES is that the matrix A is never required explicitly, rather only

matrix-vector products of the form Ar are required. When the matrix A is a Jacobian of a non-linear

residual, these matrix-vector products correspond to Frechet derivatives, which may bc evaluated directly

by finite-difference techniques.

2.5. Preconditioning. Preconditioning, while not a solution strategy in itself, is a technique which

can be employed to accelerate existing solution methods. The principal idea, for a linear system, is to replace

the original system described in equation (2.4) by the preconditioned system

(2.10) PAx -- Pb

where P is a matrix which approximates A -1, while being simple to compute. (This corresponds to left

preconditioning. A right preconditioned system is also possible [50], but will not be discussed here for

brevity). Obviously the most effective preconditioner would bc A -1 itself, but this would be too expensive

to compute. The requirements for P arc thus similar to those for the matrix M described above for iterative

methods, and most iterative methods can be used as preconditioners. In fact, setting p-I = M and using

a Richardson explicit method to solve the preconditioned system corresponds to using the iterative method

defined by the original splitting of A = M + N (i.e. equations (2.6) and (2.7)). However, the power of

preconditioned methods lies in their application to more complex iterative methods such multi-stage explicit

or Krylov methods.

Choosing p-1 = D corresponds to diagonal preconditioning, while choosing p-1 equal to the entries in

the Jacobian which correspond to lines in the mesh (artificially constructed in the case of an unstructured

mesh) corresponds to line or tridiagonal preconditioning [34, 35].

ILU preconditioners have been used with great success in CFD applications [60, 45, 6, 9, 66]. This class

of preconditioners arises from an incomplete LU factorization of the Jacobian matrix. This factorization

is incomplete in that any entries which arise during the factorization which fall outside of a pre-specified

non-zero pattern are discarded. The most common approach, ILU(0), preserves the non-zero pattern of the

original Jacobian matrix, although methods allowing additional fill-in (ILU(n) n > 0) have been employed

occasionally [66]. If L and U represent the approximate factorizations, then the ILU preconditioner is defined

i_| !! I



asP = (LU) -1. Note that ILU can also be used as an iterative method by setting M -1 = (LU) -1 in the

definition for M above [60].

Preconditioning can also be employed for non-linear solution strategies, or in cases where the matrix

P or p-1 cannot be expressed explicitly (e.g. consider the case where a multigrid method is used as a

preconditioner). If a generic non-linear updating scheme is formulated as:

(2.11) Aw = F[R(Wl), R(w2), ..., R(wk)]

then the preconditioned scheme can be constructed simply by replacing the non-linear residuals in the above

equation by the preconditioned residuals PR(wl)..., PR(wk). In the case where the matrix P cannot be

expressed explicitly, the preconditioned scheme is obtained by replacing the non-linear residuals in equation

(2.11) by thc corrections generated by the preconditioning scheme (i.e. multigrid scheme or other) applied

to the corresponding solution vectors Wl, ..., wk.

The term local preconditioning generally refers to preconditioners which depend only on values at the

current grid point, with no influence from neighboring grid point values. The Jacobi preconditioner (p-x __

D) is an example of a local preconditioner. For the Navier-Stokes equations, the diagonal block D represents

a 5 x 5 matrix at each grid point, which must be inverted [47, 40, 41, 43]. Many of the recently proposed

local prcconditioners [57, 29, 11, 63] involve changes to the discretization as well as preconditioning of the

existing time-stepping or solution strategy. As will be discussed in the section on current solution strategies,

these methods should not be classified simply as preconditioning techniques with regards to convergence

accelcration, since traditional preconditioning methods have no influence on the accuracy of the final solution.

2.6. Multigrid Methods. The basic idea of a multigrid strategy is to accelerate the solution of a set

of fine grid equations by computing corrections on a coarser grid. The motivation for this approach comes

from an examination of the error of the numerical solution in the frequency domain. High-frequency errors,

which involve local variations in the solution, are well annihilated by simple explicit methods. Low-frequency

or more global errors are much more insensitive to the application of explicit methods. Multigrid strategies

capitalize on this rapid initial error reduction property of explicit schemes. Typically, a multigrid scheme

begins by eliminating the high-frequency errors associated with an initial solution on the fine grid, using

an explicit scheme. Once this has been achieved, further fine grid iterations would result in a convergence

degradation. Therefore, the solution is transferred to a coarser grid. On this grid, the low-frequency errors

of the fine grid manifest themselves as high-frequency errors, and are thus eliminated efficiently using the

same explicit scheme. The coarse-grid corrections computed in this manner are interpolated back to the fine

grid in order to update the solution. This procedure can be applied recursively on a sequence of coarser and

coarser grids, where each grid-level is responsible for eliminating a particular frequency bandwidth of errors.

Multigrid strategies are generally considered as convergence acceleration techniques, rather than solution

methods themselves. In fact, they may be applied to any existing relaxation technique, explicit or implicit.

Multigrid methods may be used to solve a linear system of equations, (c.f. equation (2.3)), or may be applied

directly to the non-linear equations.

If the fine grid system of equations is written as

(2.12) LhWh = fh



where Wh is the solution which we seek, and the subscript h denotes fine grid values, and the residual rh is

defined as

(2.13) LhWh -- fh : rh

where _h represents the current estimate of the solution, then taking the difference of the above two equations

yields

(2.14) Lhwh -- Lh_h = --rh

If the operator Lh is linear, the above equation may be reduced to an equation for the correction /kWh ----

Wh -- _h:

(2.15) LhAWh -_- --rh

Assuming that the high-frequency errors in the solution have been eliminated by sufficient fine grid smoothing

cycles, the remaining correction /kWh which we seek must be smooth, and can therefore be computed more

efficiently on a coarser grid by solving the equation

(2.16) L H /kW H = --IH rh

where the subscript H dcnotes a coarser grid, and I H is the restriction operator which interpolates residuals

from the fine grid h to the coarse grid H. Once equation (2.16) is solved (typically recursively on coarser

levels), the corrections are interpolated back to the fine grid as

(2.17) = + x, /kH,

where I_ represents the prolongation operator which interpolates coarse grid corrections to the fine grid.

Once these fine grid values have been updated, they may be smoothed again by additional fine grid iterations,

and the entire procedure, which constitutes a single multigrid cycle, may be repeated until overall convergence

is attained. This scheme, which is valid only for linear systems, is known as the multigrid correction scheme

(cs).

In the case where Lh is a non-linear operator, the difference LhWh -- LhWh in equation (2.14) can no

longer be replaced by Lh/kWh, and thus the above scheme must be modified. This is achieved by introducing

a new coarse grid variable wH defined as

--H

(2.18) WH -_ Ih Wh + /kWH

where ]h represents an operator which interpolates fine grid solution variables to the coarse grid. The coarse

grid equation equivalent to equation (2.16) can now be written as

(2.19)

which is solved for _H.

back to the fine grid as

(2.20)

--H
LHWH ----- --LHI h Wh -- IHrh

The corrections (rather than the wH variables themselves) are then interpolated

= + -

10



This non-linear multigrid strategy is known as the Full Approximation Storage scheme (FAS). One of thc

principal advantages of this approach is that storage of the Jacobian matrix is avoided. This enables an

efficient solution strategy which requires little more memory than that of the baseline (usually explicit)

scheme employed to drive the smoothing process. This approach can be very beneficial especially for large

unstructured mesh calculations.

Due to their structured grid heritage, multigrid methods have traditionally been developed from a

geometric point of view. In this approach, coarse grids are constructed by removing alternate fine grid lines

in each coordinate direction, and coordinate space interpolation routines (i.e. linear or bilinear) are used for

restriction and prolongation. While this approach has been demonstrated successfully for unstructured grids

[38, 42, 47, 28], recent interest has shifted towards algebraic or agglomeration multigrid methods. These

approaches avoid the difficulties of constructing coarse meshes on complicated geometries associated with

the geometric approach. Instead of consistent geometric coarse mesh levels, all that is required are coarse

level matrices or graphs, which involve no geometric constraints, and can be constructed in a fully automatic

manner. This is achieved using a graph algorithm, which identifies subsets of the fine grid points to be used

as coarse grid points, or alternatively defines groupings of fine grid points which are comprised in coarse

level control-volumes, as depicted in Figure 2.2.

In the purely algebraic multigrid algorithm, no underlying grid is defined, and only thc matrix A of the

linear system (c.f. equation (2.4)) is known. In this case the graph algorithm operates directly on thc graph

(i.e. non-zero entries) of the sparse matrix. The duality with geometric approaches arises from the fact that

this matrix graph is equivalent to the graph of the grid in the case of a nearest neighbor stencil discretization

on tetrahedral meshes. Once the coarse levels have been constructed, the coarse level equations to be solved

are obtained by projecting the fine level operator as

(2.21) LH = I_Lh Ih

Thus the coarse level equations are constructed in a completely algebraic manner, without any notion of

spatial discretization. In many instances, simple piecewise constant operators are used for restriction and

prolongation. In such cases, the above coarse grid operator reduces to summing constituent fine grid discrete

equations to form the coarse level equation sct [20, 25, 37, 33]. The particular fine grid equations to be

summed for each coarse level equation are determined by the graph algorithm which constructs the coarse

levels. For algebraic multigrid methods, which are only valid for linear systems, this corresponds to the direct

summation of non-zero entries in the fine level matrix. Agglomeration multigrid represents an extension of

these ideas to non-linear systems. In this approach, only the solution independent terms are summed in

going from fine to coarse levels, while the solution dependent terms are obtained from coarse level variables

interpolated up from the fine level solution, following the FAS approach.
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FIG. 2.2. Illustration of Agglomeration of Fine Grid Vertices into Coarse Level Groupings or Control Volumes

2.7. Defect-Correction Schemes. Defect-correction schemes enable the solution of a higher order

discrctization using a solution strategy based on a lower order discretization. Similarly to preconditioners

and multigrid methods, defect-correction schemes represent a convergence acceleration technique, which can

be applied to existing solution methods.

Assuming we want to solve the higher-order non-linear system Ralgh(w) = 0, and have an efficient

technique for solving the lower order system Rlow(W) = 0, a defect-correction iteration iteration can be

formulated as:

(2.22) Rlow(W n+1 ) = Rlow(W n) - Rhlgh(W n)

where the right-hand-siderepresentsthe defect,or differencebetween the higherand lower-orderoperator.

This iterationachieves convergence when Rhlgh(W) ----0, sincethis isthe situationin which the iteration

scheme definedby equation (2.22)produces no additionalchanges in w. Defect-correctionstrategiescan

be applieddirectlyto non-linearoperators without the need forforming and storinga Jacobian. They are

often employed in conjunction with multigrid techniques,using a first-ordermultigridstrategyto solvea

second-orderdiscretization[26].This enables the use of first-ordermultigridmethods which are generally

very efficientand robust. In the algebraicor agglomeration multigridcase,the use of a first-ordermethod

may be the enabling factorforpreservingthe correspondence between the matrix graph and the gridgraph.

A common practiceinmultigridimplementations isto employ a first-orderdiscretizationon the coarse

levelgrids,while retainingthe second-orderaccurate discretizationon the finegrid.This correspondsto the

use of a defect-correctionscheme on the coarserlevelsofthe multigridMgorithm [21,38,43].

3. Linear and Non-Linear Methods. One of the principal choices in designing a solution strategy for

unstructured mesh CFD problems concerns the treatment of the non-linear behavior of the equations. This is

an important consideration, since the resulting memory and cpu requirements can vary significantly between

the linearized and the non-linear approaches. The purpose of the following discussion is to demonstrate the

equivalence between several well known linear and non-linear strategies.

The essence of the argument is that all non-linear approaches can be shown to be equivalent to a

linearized approach where Jacobian-vector products are replaced by a finite difference of the residual as:

OR

(3.1) _wwAW -_R(w -{-Aw) - R(w)

12



or, alternatively

(3.2) OR R(w + er) - R(w)
WW r_'

where r is an arbitrary vector, and e is a small parameter. This is the basis for Newton-Krylov methods,

which use a sequence of the above finite-difference evaluations to approximate the 3acobian-vector products

Ar required by Krylov methods such as GMRES (c.f. equation (2.9)). Other solution strategies, such

as preconditioned non-linear iteration methods, defect-correction approaches, and the Full Approximation

Storage (FAS) multigrid method can also be recast as modifications of the equivalent linearized approach

using finite differencing of the non-linear residual operator.

Equation (2.3) constitutes the starting point for all linear methods. Neglecting the contribution of the

time-step (valid for large time-steps) the linearized system of equations becomes

OR

(3.3) _wwAW = -R(w n)

oR = M + N (c.f. equation (2.5)),A class of iterative schemes is defined by splitting the Jaeobian matrix as

thus producing the following iterative scheme:

(3.4) [M] Awt k+l = -R(w °) - IN] Awl k

which can be rewritten as

(3.5) [M] [Awl k+l -- Awt k] = -R(w °) - [M + N] Awt k

where Awl represents the correction generated by this linear iteration strategy, and the superscript refers to

the linear iteration count. The corresponding non-linear preconditioned iteration strategy can be written as

(3.6) [M] Aw.l n+a = -R(w n)

where w n+i = w n + Aw_t n+l, and the nl subscript refers to the non-linear update. In this case, the residual

operator R(w '_) is updated (and therefore reevaluated) at each iteration in the non-linear scheme, whereas it

is held fixed in the linear approach. On the other hand, the linear approach requires storage for all Jacobian

terms [M + N], while the non-linear approach only requires storage for the preconditioning matrix [M]. At

convergence the non-linear updates Aw,.,t n vanish, while the linear updates Awt k approach a constant value.

The correspondence between the linear and non-linear updates is given by:

(3.7) Awnt k+l = Awt k+l -- Awt k

which by summation yields

k

(3.8) Awlk = Z Awnln
rl,=O

with the assumption Awl ° = 0. Substituting these expressions into equation (3.5) produces the expression

k

(3.9) [M] Aw, tk+l -----R(w °) - [M + N] Z Aw"t'_
n=0

13



which is equivalent to equation (3.6) provided

k

(3.10) [M + N] Z Awntn _ R(w°) - R(wk)
n_0

which corresponds to approximating the Jacobian vector product by a finite-difference approximation, as-

suming the preconditioning matrix [M] to be constant. In the case where the residual is linear in w, the two

schemes are exactly equivalent. Local preconditioning methods, such as Jacobi preconditioning employed

with explicit time-stepping, are thus equivalent to (block)-Jacobi iterations applied to the linearized system

under these assumptions. The common practice of using a first-order Jacobian in the linearization (c.f.

equation (3.3)), means that the approximation in equation (3.10) will be less accurate, thus contributing to

further differences between the non-linear and linear (defect-correction) iteration strategies.

In the case of the defect-correction scheme, (defined by equation (2.22)), using the finite-difference

approximation to the low-order residual operator

(3.11) 0R,ow Aw = Rlow(W n+l) - Rlow(W n)
Ow

enables the scheme to be rewritten as

(3.12) 0Rlow Aw
OW ----- --Rh|gh(W")

Thus, the popular strategy of employing a Jaeobian derived from a first-order discretization operator in many

linearized implicit schemes (often dictated by memory requirements) corresponds to a defect-correction

scheme. Note that this linearized defect-correction scheme can also be interpreted as a preconditioning

scheme, where the preconditioning matrix is given by P = faR___]-1
k Ow J

The FAS multigrid scheme applied directly to the non-linear equations can also be shown to be equivalent

to a linear multigrid correction scheme (CS) applied to the linearized form of the equations. In this latter

case, equation (3.3) is solved using the multigrid correction scheme, and the operator L previously used to

oR The coarse grid equations (c.f. equation (2.16))define the multigrid scheme corresponds to the Jacobian y_d.
thus become

[OR] AWH= _IHR h(3.13) _ww H

using H and h to denote the coarse and fine grids respectively. Replacing the left-hand side of this equation

with a finite difference of the residual yields

(3.14) RH (WH n+ 1) _ RH (WH '_) ------IHRh

which is equivalent to the FAS coarse grid equations described in equation (2.19), since WH n represents

the values interpolated up from the fine grid, and the operator L used to define the FAS scheme now

corresponds to the non-linear residual operator R. This also provides the justification for interpolating the

change WH '_+1 -- WH n back to the fine grid rather than the variables WH '_+1 themselves.

The correspondence between linear and non-linear schemes demonstrated above has implications for

the design of efficient solution strategies. While substantial differences between the linear and non-linear

approach may be expected in the initial phases of convergence when large transients are present, in the

asymptotic convergence region, where the updates become very small and the linearization becomes more
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accurate, the two approaches can be expected to behave almost identically. Solution strategies which provide

a good balance between memory and cpu usage, as discussed in the introduction, can therefore be designed

by making the most appropriate decisions concerning the treatment of the governing equation non-linearities.

4. Current Solution Strategies.

4.1. Block Matrices and Local Preconditioners. One of the most prevalent techniques in modern-

day solution algorithms is the treatment of systems of equations, such as the Navier-Stokes equations, as

fully coupled systems at each grid point. This involves writing the Jacobian matrix as a block-matrix, and

performing all matrix operations at the block level (i.e. block diagonal inversions, block tridiagonal, block

ILU etc.)

It has been well established that simple scalar methods (such as local time-stepping) can be improved

upon by replacing them with methods that take into account point-wise coupling, such as Jacobi precondi-

tioning techniques [47, 40, 41, 43]. For the laminar Navier-Stokes equations, the block sub-matrices are 5 × 5

matrices, which can be directly inverted or factorized at reasonable cost.

For Reynolds-averaged Navier-Stokes computations, the turbulence model and flow equations are of-

ten solved in an uncoupled fashion [34, 35], although full point-wise coupling of these equations has been

suggested more recently [58].

Point-wise coupling can be added to schemes which lack this property through local preconditioning

techniques. For example, a Jacobi preconditioner can be used to modify the simple explicit scheme

(4.1) Aw_ R(w)
At

as

(4.2) [D] Aw = -R(w)

where the diagonaltime-stepmatrix J_thas been replacedby the block diagonal [D] ofthe Jacobian matrix.

In fact, most so-called "local preconditioners" [57, 29, 11, 63] are more sophisticated than this simple

example. These methods have been devised to reduce the disparity in eigenvalues of stiff systems, as in the

case of nearly incompressible flow, where there exists a large disparity between the acoustic and pressure

modes in the Euler or Navier-Stokes equations. This is achieved by modifying the discretization as well as

preconditioning the time-stepping procedure. If the discrete residual is written as

neighbors 1 1
(4.3) -R(w) = _ _(F(wi) +F(wk)).nik --_IA,_[(wk - wi)

k=l

where F representsthe convectivefluxes,nik the outwards normal at a control-volumeinterface,A the dissi-

pation or Roe matrix arisingfrom an approximate Rieman solver,and the summation isover allneighboring

verticesk ofvertex i,then the applicationofa typicallocalpreconditionercan be written as

neighbors
1 1

k=l
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where the dissipation terms in the residual have been modified by the "preconditioning" matrix [P], and the

time-stepping history by the "preconditioning" matrix [P].

An alternative interpretation of these methods arises if one simply considers the Jacobi preconditioner

described by equation (4.2), applied to the modified residual of equation (4.4) which, through a linearization

of the new residual terms can be written as [34]:

neighbors

(4"5/ ( _--_ _plp_lAikl)Awi = neighbors

k=l k=l
l(F(wi) + F(wk)).nik -- 1PIp-1Aikl(wk - wi)

tX-_neighbors ½pi P-1Aik I matrix is completely determined by the modificationsIn this case, the [-Pi] = tz-,k=l

to the discrete residual (i.e. the [P] matrix). In fact, in the case where the [P-1A] matrix is diagonal (i.e.

scalar dissipation), the [-P-] and [P] matrices become identical (to within a multiplicativc constant, neglecting

the differences between P evaluated at the interfaces ik and evaluated directly at the vertex i). This offers a

different view-point of the mechanism involved for relieving low Mach number stiffness in compressible flow

formulations. Rather than a technique which attempts to alter the time history of the convergence process,

this type of "preconditioning" may be thought of as one which simply alters the discretization of an implicit

(Jacobi) scheme to yield a more consistent and less stiff system of equations.

4.2. Linear Implicit Methods based on First-Order Jacobians. One of the most common tech-

niques in the context of linear implicit methods consists of using an approximate Jacobian obtained through

a linearization of a first-order discretization. This amounts to a Iinearized defect-correction scheme, as

demonstrated by equation (3.12), therefore retaining full second-order spatial accuracy at convergence. The

advantages include lower storage requirements for the simpler Jacobian, more diagonally dominant linear

systems, and often a Jacobian matrix graph which corresponds to the grid graph, thus enabling Jacobian

assembly and manipulation using edge-based data-structures. In all cases, the Jacobian matrices are treated

as block matrices.

Jacobi, Gauss-Seidel, or SSOR linear solvers have been developed in the literature for unstructured

meshes [64, 7, 3]. In general, these solvers perform reasonably well for simple problems, but degrade as the

problem size or stiffness increases [60]. For these reasons, the schemes are often used as preconditioners for

Krylov iteration methods, or as smoothers for multigrid. In practice, the ILU(0) preconditioned GMRES

linear solver has consistently been found to offer the best combination of robustness and efficiency [60, 61],

while simpler schemes such as Gauss-Seidel have been used as effective multigrid smoothers [45]. Figure

4.1, reproduced here from reference [45] illustrates the convergence rates obtained using a red-black Gauss-

Seidel iterative scheme and an ILU(0) pre_conditioned GMRES iterative scheme, both used as solvers and

as smoothers within a non-linear multigrid strategy. In all cases, the iterative solvers are used to converge

the linear system corresponding to the defect-correction scheme (i.e. a Jacobian derived from a first-order

discretization). The problem being solved consists of two-dimensional inviscid flow over a 4-element airfoil

on an unstructured grid of 25,862 vertices. The Gauss-Seidel scheme used as a solver yields the slowest

convergence, while the stronger ILU pre-conditioned GMRES iterative solver achieves substantially faster

convergence. However, both schemes produce superior convergence rates when used as multigrid smoothers.

These comparisons are made based on the number of outer non-linear iterations. Figure 4.2 provides a

comparison in terms of CPU time, which illustrates the cost of an ILU-GMRES iteration over a Gauss-Seidel

iteration. In this case, the most efficient solver is the Gauss-Seidel multigrid scheme using a W-cycle. In fact,

even the Gauss-Seidel based multigrid V-cycle is more efficient than the equivalent ILU-GMRES multigrid
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V-cycle,dueto thegreaterexpenseof the stronger ILU-GMtLES smoother. In this particular case, the

stronger smoother does not produce a large enough increase in convergence speed to cover its extra expense.

However, in more stiff problems, such as viscous flow simulations, the smoothing effectiveness of the simple

Gauss-Seidel scheme may degradc faster than that of the ILU-GMtLES scheme, making the latter a more

effective solution scheme in terms of CPU time.

In cases where the Jacobian is stored explicitly, the memory requirements are significantly higher than

those required by an explicit or FAS multigrid scheme. Recomputing the Jacobian terms "on-the-fly" as

in the LU-SGS scheme [22, 52] can be used to reduce memory usage. This can also be achieved with the

GMRES solver, using finite-differences to approximate the Jacobian-vector products. However, matrix-based

preconditioners such ILU, which are instrumental in the success of GM-RES methods, still require storage

levels comparable to that required by the Jacobian matrix.

While good convergence rates have been demonstrated with linearized defect-correction schemes, recent

analysis (based on periodic boundary conditions) indicates that the spectral radius of such schemes tends

to unity as the grid is refined [56]. While the level of grid resolution at which this effect becomes noticeable

has yet to be determined, this suggests that defect-correction schemes may be best suited as smoothers or

preconditioners for an outer non-linear Newton or multigrid scheme.
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4.3. Linear Implicit Methods based on the Full Jacobian. Since the Jacobian of a full second-

order discretization contains a much larger proportion of non-zeros than that based on a first-order Jacobian,

this more complex 3acobian is seldom assembled and stored explicitly. For second-order discretizations based

on higher-order reconstruction, Barth [6] has shown how the higher-order Jacobian matrix-vector product

may be expressed as a product of a first-order Jacobian matrix applied to a reconstructed vector, as per

equation (2.2). This technique, which avoids storing the full second-order Jacobian, has been applied suc-

cessfully in the context of a fully implicit ILU(0) pre-conditioncd GMRES scheme [6, 61]. The more common

practice of evaluating the second-order Jacobian-vector product by finite-differences has seen widespread use

in Newton-Krylov methods, particularly employing ILU preconditioned GMRES solvers. Although storage

of the Jacobian is avoided in this manner, the ILU preconditioners can require substantial amounts of stor-

age. In most cases an ILU(0) preconditioner based on a factorization of a first-order Jacobian is employed

[60, 45, 9, 24, 66], although faster convergence with additional memory overhead has been demonstrated

for ILU(1) and ILV(2) preconditioners on structured meshes [66]. Barth [5] has demonstrated increased

convergence rates using an ILU(0) factorization of the hdl second-order Jacobian.

Newton-Krylov methods have become relatively robust and efficient, and parallelize efficiently when the

preconditioning step is applied locally to partitioned subdomains, and the Schwarz procedure is employed to

account for the coupling between the domains [6, 9, 10]. If the linear system is solved to adequate tolerance

at each non-linear step, quadratic convergence is generally observed, providing very rapid convergence to ma-

chine zero in terms of the number of non-linear updates. This behavior is observed in Figure 4.3, reproduced

from [24], where the convergence history achieved by a Newton-Krylov-Schwarz method running in parallel

on a CRAY T3E is displayed. The problem being solved consists of inviscid flow over an ONERA M6 wing,

on a relatively fine grid of 2.7 million vertices. This calculation achieved an aggregate computational rate of

32 Gflops on 512 processors of the CRAY T3E, demonstrating the suitability of such algorithms for parallel

machines. When increased numbers of domains are used, global convergence of the Newton-Krylov-Schwarz

method degrades only slightly, as depicted in the figure. In spite of their rapid asymptotic convergence,
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one of the drawbacks of Newton-Krylov methods, is the relatively slow convergence of these methods in the

inital phases of the calculation. The use of continuation techniques (i.e. such as grid sequencing) is currently

under investigation to accelerate this phase of the calculations [61].
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4.4. Unstructured Multigrid Methods. Most early multigrid methods for unstructured grids were

based on the geometric approach [38, 42, 47, 28]. In this approach, coarse level grids are constructed either

manually using a grid generator, or using an automatic point-removal process followed by retriangnlation

[15]. Restriction and prolongation operators are constructed using linear interpolation between the coarse

and fine grids of the multigrid sequence. Figure 4.4 illustrates a sequence of grids employed by a geometric

multigrid algorithm for computing the inviscid flow over an aircraft configuration. The finest grid contains

a total of approximately 804,000 vertices, and the flow conditions (Mach -- 0.77, incidence -- 1.116 degrees)

result in transonic flow. Figure 4.5 illustrates the speedup achieved by the multigrid algorithm over the

single grid explicit scheme for this case. A residual reduction of roughly six orders of magnitude in 100

cycles is observed for the multigrid algorithm, which is an order of magnitude faster than the single grid

explicit scheme. While the success of these methods in reducing solution time is undeniable, thc difficulties

associated with constructing consistent coarse grid levels, particularly in three dimensions, was soon found

to be a practical limiting factor.

For this reason, algebraic multigrid methods have been developed, particularly in the commercial software

field, were usability is of the utmost importance [19, 46, 62]. Since algebraic multigrid schemes arc linear

methods, they must be applied to the linearized equations (c.f. equation (2.3) or (3.3)). For example, the

additive correction method [19, 33] corresponds to an algebraic multigrid method which has been applied

to a first-order Jacobian linearization of the governing equations. A similar approach has been described in

reference [62] using an algebraic multigrid method operating on a first-order Jacobian linearization, using a

locally preconditioned multi-stage explicit smoother.
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FIG.4.4.Sequence of Geometric Grids Employed for Geometric Multigrid for Computation of Flow over Aircraft Config-

uration
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FIG. 4.5. Comparison of convergence rate achieved by geometric and agglomeration multigrid methods with single grid

explicit scheme for inviscid transonic flow over aircraft configuration
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Oneofthedifficultiesassociatedwithalgebraicmultigridmethodsappliedto linearsystemsis thelarge
memoryoverheadstheyincur.Recallthatthestorageofa first-orderJacobianrequiresfourto fivetimes
morememorythanapurelyexplicitscheme.Agglomerationmultigridmethods[27,53,37,33]combinethe
automationofalgebraicmultigridmethodswith the low-memoryoverheadsassociatedwithFASmultigrid
methods.In thisapproach,non-geometriccoarselevels(i.e.groupingof finegridvertices)areconstructed
usinga graphalgorithm,andnondinearcoarselevelequationsareformedusingalgebraicallyconstructed
stencilcoefficientsandflowvariablesinterpolatedfromupthefinelevels.

Figure4.6depictsthegraphcorrespondingto thefinegridof Figure4.4,andthreeadditionalcoarser
graphsgeneratedandemployedbytheagglomerationmultigridschemetorecomputethesamecasedescribed
abovein thecontextofgeometricmultigrid.Theconvergencerateoftheagglomerationmultigridiscompared
with thegeometricmultigridresultin Figure4.5,wherethetwoconvergenceratesareseento bealmost
identical.

FIG, 4.6. Fine and coarse level agglomerated graphs employed by the agglomeration mulligrid algorithm for computation

oS inviseid transonle flow over alrcra_ configuration

Agglomeration multigrid methods have also been combined with local preconditioners to produce en-

hanced convergence rates with minimal additional memory overheads [34, 35]. Additional convergence accel-

eration can be obtained by using multigrid methods as preconditioners for Krylov iteration techniques such

as GMRES [65, 41, 34] In this case, the GMRES method requires additional storage, which scales linearly

with the prescribed number of search directions in the GMRES algorithm. The number of search directions

must therefore be determined by considering the balance between increased memory usage and enhanced

convergence acceleration produced by the overall method. In most instances> a maximum of 20 to 30 search
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directions are employed in GMRES.

Figure 4.7 (reproduced from [34]) compares the convergence rates achieved by various multigrid strategies

for the computation of two-dimensional viscous turbulent flow over a three-clement airfoil configuration on

a grid of 30,562 vertices, at a Mach number of 0.2, an incidence of 16 degrees, and a Reynolds number

of 5 million. The original multigrid scheme converges rather slowly compared to the rates displayed for

the inviscid fiow solutions in Figure 4.5. The directional-implicit multigrid method, to be described in the

following section, achieves only modest speedup over the original algorithm in this case.

However, the addition of local preconditioning (designed to relieve stiffness associated with low-Mach

number effects), as described by equation (4.5), rcsults in substantially improved convergence for this case,

most likely because of the large regions of low Mach

number flow which arc present in the solution. Finally, the use of the entire pre-conditioned multigrid

solution strategy as a preconditioner for GMRES results in even faster convergence, driving the residuals to

machine zero in just over 400 equivalent multigrid cycles.
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FIG. 4.7. Comparison of various multigrid strategies for computation of two-dimensional viscous turbulent flow over

three-element airfoil on grid of 30562 vertices (reproduced from [33])

4.5. Anisotropic Problems. For high Reynolds number viscous flow simulations, highly stretched

grids are required for efficiently resolving the thin boundary-layer and wake regions. Thesc grids can often

exhibit aspect ratios of the order of 104 , thus resulting in very stiff systems of discrete equations. Much

recent work has been devoted towards developing efficient solution strategies for highly anisotropic problems.

Unstructured grid based solution strategies are at a distinct advantage with regards to highly anisotropic

problems. Due to the lack of a global grid structure, anisotropic regions may be identified and localized, thus

enabling the development and application of adaptive solution strategies, which can be designed to take into

account the local degree of anlsotropy. For example, semi-coarsening techniques often used in structured

multigrid methods, where grid points are removed in only one coordinate direction, cannot deal efficiently

with grids containing conflicting stretching directions. For unstructured mesh multigrid methods, semi-

coarsening methods generalize to directional-coarsening methods, which can produce an optimal coarsening
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based on the local degree of anisotropy in the mesh.

While regular (fully coarsened) multigrid methods degrade rapidly with increasing grid stretching,

strongly implicit methods may be more resilient with regards to anisotropic problems. This is due to

the fact that the implicitness required to relieve the anisotropy induced stiffness may inherently reside in the

existing solution strategy. For example, a direct method would presumably be completely insensitive to the

degree of anisotropy in a problem. In most cases however, implicit solution strategies designed for isotropic

problems degrade with increasing anisotropy. This indicates the need for research into anisotropy-capable

implicit methods.

One approach consists of forming local line structures in the unstructured grid, by joining together

strongly connected neighboring points, based on the local degree of anisotropy in the mesh, and solving the

reduced implicit system on these lines [34, 35]. As an example, the application of a weightcd-graph algorithm

[35] which identifies and groups together edges joining strongly connected neighbors results in the set of lines

depicted in Figure 4.8 when applied to the stretched two-dimensional grid shown in the same figure.

....._"_J;,:l!' '_ i ' ! I '_'!,"[ ' ,_I i
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FIG. 4.8. Initial stretched unstructured grid and extracted set of lines using weighted-graph algorithm for Fine-implicit

multigrid smoother (reproduced from [35])

Another approach consists of partitioning the domains, within which strongly implicit solution proce-

dures are applied, such that the degree of coupling between the domains is minimized. In a typical anisotropic

Navier-Stokes grid, this corresponds to domain partition boundaries which span the weak (streamwise) con-

nections of the grid. This approach has been pursued to some extent using an ILU preconditioned solver on

the local domains in the context of a multigrid algorithm in reference [46]. For parallel computations, in thc

context of a Schwarz method for example, this constrained partitioning approach would need to balance the

potential for increased convergence versus the possible increased communication volume generated by such

partitions.

Directional coarsening methods, where coarse multigrid levels are constructed by removing points based

on the relative strength of local stencil coefficients, is an integral part of any algebraic multigrid method [49].

Directional coarsening methods have also been applied in the context of geometric multigrid methods [39],

and agglomeration multigrid methods [33, 46, 13]. These approaches enable the construction of coarse grid

levels which are optimal for the given problem. In most cases, convergence rates which are independent of

the degree of anisotropy can be achieved.
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Onc of the drawbacks of these methods is that, while good convergence rates can be achieved, the mem-

ory and cpu time associated with each multigrid cycle may increase substantially when directional coarsening

is employed. This is due to the higher complexity of the directionally coarsened levels as compared with

isotropically coarsened levels. In the latter case, grid complexity decreases by a factor of 4 in 2D and 8 in

3D when going to each next coarser level, while in the case of pure uni-directional coarsening (i.e. semi-

coarsening), the complexity reduction is only a factor of 2 both in 2D and 3D. For this reason, aggressive

directional coarsening strategies have been advocated, where the coarsening proceeds in the required di-

rection, but at an accelerated rate, by removing more than just nearest neighbor grid points between two

consecutive levels. Figure 4.9 depicts an aggressive directional agglomeration in the leading-edge vicinity of

the mesh of Figure 4.8. The thick lines represent the groupings of fine grid vertices into coarse level sets or

control-volumes. In highly stretched regions of the mesh, the directional grouping of up to four consecutive

vertices is observed. In order to preserve favorable

FIG. 4.9. Agglomerated rnultigrid level constructed on grid of Figure 4.8 illustrating aggressive 4:1 directional coal.earn 9

in boundary layer regdons (reproduced from [35])

convergence rates, the underlying explicit smoothers used in the multigrid scheme must be upgraded to

include a locally implicit behavior [46, 34].

In references [34, 35], a line-implicit preconditioned multi-stage scheme has been used in conjunction

with a directional coarsening agglomeration multigrid strategy. Figure 4.10 compares the convergence rates

achieved by this algorithm with the convergence of the baseline isotropic explicit multigrid algorithm, for

three different grids. The three grids contain identical streamwise resolution but a varying degree of stretching

in the boundary-layer and wake regions. The first grid contains a normal wall spacing of 10 -5 chords,

while the second and third grids contain normal wall spacings of 10 -6 and 10 -7 chords respectively. Each

subsequent grid therefore exhibits an order of magnitude higher stretching than the previous grid. The middle

grid corresponds to the grid depicted in Figure 4.8 and the implicit lines used by the directional implicit

multigrid algorithm are those depicted in the same figure, while the first level directional agglomeration

corresponds to the graph depicted in Figure 4.9. While the isotropic explicit multigrid algorithm conw _!;ence

rates decay with increasing grid stretching, the directional-implicit multigrid algorithm is seen to be rei. tivcly

insensitive to the amount of grid stretching, as depicted in Figure 4.10, providing rapid convergence to

machine zero in under 600 cycles for all cases.

24

i!1 _! I



__ I.c-05 NORMAL SPACING

__ _ I.e-06NORMAL SPACING

....... I.*-07 NORMAL SPACING

EXPLICIT FULL COARSENING MG

:':..._ ...... ='22"2......................................................

b._ "...Lt_

S "..:

_- 0 I00 200 300 400 500 600

Number of MG Cycles

FIG. 4.10. Comparison of convergence rates for isotropic-explicit and directional-implicit multigr_d schemes on three grids

of varying normal resolution

/

FIG. 4.11. Stretched unstructured grid on partial-span flap geometry. Number of vertices = 5_9,176 i wall spacing = 10 -s

chords

This algorithm has also been applied to three-dimensional problems using one-dimensional implicit lines

normal to the body surfaces in boundary-layer regions constructed with a weighted graph algorithm. The

turbulent flow over a partial span flap wing geometry on a grid of 549,176 vertices depicted in Figure 4.11

has been computed for a freestream Mach number of 0.2, an incidence of 10 degrees, and a Reynolds number

of 3.2 million [35]. The convergence rates of the three-dimensional isotropic explicit multigrid algorithm and

the directional-implicit multigrid algorithm are compared in Figure 4.12. In this case, the directional-implicit

multigrid algorithm provides substantial speedup over the isotropic explicit multigrid algorithm, but falls

short of the convergence rates observed in two-dimensional problems (c.f. Figure 4.10). When a GMRES

algorithm is added to the solver, using the previous solver as a GMRES(20) preconditioner, (using 20 search

directions) substantial improvement in the asymptotic convergence rate is observed, achieving a total of 9
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orders of magnitude convergence in 600 multigrid cycles. While the overall computation time per cycle varies

only slightly between the various schemes depicted in Figure 4.12, the increase in convergence due to the

GMRES algorithm comes at a 50 % increase in memory usage due to the storage of the search directions for

the GMRES procedure.

S
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"-....

1_ 2.00 300 400 500 600
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FIC. 4.12. Convergence rates attained by three different multigrid schemes for flow over partial-span flap geometry

5. The Potential for Future Advances. While much progress has been achieved over the last decade

in developing efficient solution strategies for unstructured mesh problems, the best convergence rates cur-

rently available on CFD problems remain one to two orders of magnitude slower than what can be achieved

by the best algorithms on simple linear elliptic problems.

For example, a properly formulated multigrid method is capable of producing convergence rates of 0.1

for a Poisson equation, meaning that for each multigrid cycle, the error is reduced by an order of magnitude.

This enables the solution of such problems in less than 10 multigrid cycles. By contrast, the best multigrid

methods for CFD problems still require several hundred cycles to achieve acceptable convergence levels.

Optimal multigrid algorithms for CFD problems, capable of convergence rates of the order of 0.1, have

recently been demonstrated for simple two-dimensional incompressible and compressible flow problems both

on structured and unstructured meshes [8, 54, 48]. The central idea in the development of these schemes

is the decoupling of the hyperbolic and elliptic parts of the governing equations. The decoupled hyperbolic

convective terms are solved by sweeping through the domain in the downstream direction, while the elliptic

part, which corresponds to a pressure Poisson equation, is solved by an optimally convergent multigrid

method. As an example, the flow over a bumb in a channel, displayed in Figure 5.1, has been computed on

several unstructured grids of increasing resolution (obtained by subdividing a corresponding structured grid)

in reference [48]. Figure 5.2 depicts the convergence rates obtained by this approach, which are essentially

grid independent, and realize a 6 to 7 order of reduction in the residuals in only 10 multigrid cycles.

One of the problems with these approaches, is that they are not simply convergence acceleration tech-

niques which can be applied to existing discretizations, but require the use of a particular discretization
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whichin turn enablesthedecouplingintoellipticandhyperbolicparts.In thissense,theyarerelatedto
the local-preconditioningmethodsdescribedpreviously,whichin additionto modifyingthetime-stepping
behaviorofthecorrespondingun-preconditionedscheme,resultin changesto thediscretization.However,
in thepresentcases,thechangesto thediscretizationrepresentcompletelydifferentapproachesfromthe
traditionalconservative-variablefinite-volumeor finite-elementdiscretizationstypicallyemployedinexisting
CFD approaches.

This may severely limit their applicability, since it may not be feasible in general to radically overhaul

familiar validated discretizations in existing codes. A potential alternative is the development of a pre-

conditioning matrix which, when applied to existing discretizations, mimicks the separation of elliptic and

hyperbolic terms in the time-stepping scheme.

While the treatment of the convective terms using a sweeping method has proved to be very successful

for simple flows of the type displayed in Figure 5.1, the extension of this approach to more complex flows

involving regions of rotating, recirculating and reverse flow remains an area of research.

FIG. 5.1. Pressure contours computed for flow over bump on unstructured grid of 97 x 33 vertices (reproduced from

reference [48])

o
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FIG. 5.2. Demonstration of textbook multigrid convergence for computation of inviscid flow over bumb on unstructured

grids of widely varying resolution (reproduced from reference [,_8])

6. Conclusions. Advances in our ability to solve large complex stiff problems are likely to come as

much from increases in algorithmic efficiency as from increases in hardware capability over the next decade.

Of particular interest is the development of algorithms which are well suited to the current trends in computer

hardware, which include parallelism and memory-latency tolerance. There exist a wide variety of techniques

for enhancing convergence, and most successful solution strategies employ combinations of several of these

techniques. The optimal algorithm is a function not only of the target hardware platform, but also of the

characteristics of the desired application, the usability of the final method, and its robustness. Thus, further
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development on many different types of algorithms is likely to persist in the future. The development of

solution methods capable of converging problems in the same number of steps as a direct (Newton) method,

but at little additional cost per iteration over a purely explicit scheme remains a long-term goal.
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